Hovells Creek – what will 2030 present?

Phil Graham

Graham Advisory

YASS

Wyangala dam from 1955 on a 10 yr moving average

Mean temperature and rainfall on a 10 yr moving average

Historical and 2030 rainfall

1955 to 2018 2000 to 2018

2030

CLIMATIC ZONE: 3C, 3D, 10A and 10B.

Annual average rainfall generally exceeds 650 mm. May be summer or winter dominant. Summers are hot and winters mild to cold.

SS – wy WYANGALA SOIL LANDSCAPE

Dr

Historical pasture production over time for 3 soil types

Average annual pasture over 3 19 year periods

Native grass Sub clover Annual grass

3 soils

pasture climate

1955 to 2018 30 yrs at 2030

GrassGro

Merino

CO2 fertilisation

- The model takes CO2 fertilisation into account in working out pasture production.
- Levels used 380 ppm for history and 440 ppm for 2030, currently 415 ppm.
- With higher levels of CO2 the stomates under the leaf do not have to open as much to capture CO2 therefore there is a lower loss of water from the leaf.
- This does have a noticeable impact on pasture production and stocking rate. It only benefits C3 plants not the C4 summer growing species.

What do the % mean?

NSW VIC QLD WA SA TAS ACT NT AUSTRALIA GLOBAL ANTARCTICA

e environment[™]

(i) (?) (III) FAQ | MetEye Disclaimer | Metadata

Australia

Holbrook, NSW			Locate	- Find	lme		Time zon	e AEST
M	londay, 27 May 2019		Tue	Wed	Thu	Fri	Sat 🤮	Sun Mon
	Forecast for Holbro	ok			🖽 Seet	text view	s for locat	ion 🗙
$ \begin{array}{c} \blacksquare \\ \blacksquare \end{array} \rightarrow \rightarrow \end{array} \rightarrow $	Save location	Mon. 27 May	Tue. 28 May	Wed. 29 May	Thu. 30 May	Fri. 31 May	Sat. 1 Jun	Sun. 2 Jun
	_				🏡	🏷	※	2
	Max (°C)	11	12	11	13	16	17	17
→ →	Min (°C)	_	2	6	1	1	1	2
	Chance of rain (%)	<u> </u>	95	95	5	5	0	10
	Rainfall range (mm)		6 to 10	5 to 10	0	0	0	0
→ →	Issued 27 May 2019	Detail	Detail	Detail	Detail	Detail	Detail	Detail

NSW VIC OLD WA SA TAS ACT NT AUSTRALIA GLOBAL ANTARCTICA

Home → Places → New South Wales → Holbrook Weather

Holbrook Weather (beta)

Tuesday 28 May

\sim	Rainfall							
From	1:00 AM	4:00 AM	7:00 AM	10:00 AM	1:00 PM	4:00 PM	7:00 PM	10:00 PM
50% chance of more than (mm)	0	0	0	0.2	0	0.2	0.4	0.6
25% chance of more than (mm)	0	0	0.4	1	0.6	2	2	2
10% chance of more than (mm)	0	0.4	2	3	2	4	5	5
Chance of any rain	0%	10%	30%	50%	40%	60%	60%	70%
	Tempera	tures						
At	1:00 AM	4:00 AM	7:00 AM	10:00 AM	1:00 PM	4:00 PM	7:00 PM	10:00 PM
Air temperature (°C)	4	2	з	8	10	12	9	9
Feels like (°C)	0	-1	-1	3	5	5	з	3
Dew point temperature (°C)	3	2	3	5	7	7	7	8
	UV							
At	1:00 AM	4:00 AM	7:00 AM	10:00 AM	1:00 PM	4:00 PM	7:00 PM	10:00 PM
UV Index	0	0	0	1	2	1	0	0
	Significa	nt Weath	ar					
Erom	1:00 AM	4:00 AM	7.00 4 M	10:00 444	1:00 DM	4:00 DM	7:00 DM	10:00 DM
Thunderstorms	1.00 AM	4.00 AM	7.00 AM	10.00 AM	1.00 PM	4.00 PM	7.00 FM	10.00 P M
Snow	0	<u> </u>	0	0	0	0	0	0
Rain	0	•	•	•	•	•	•	•
Fog	0	0	0	0	0	0	0	0
Frost	0	0	0	0	0	0	0	0
	Library indites	8 Mind						
	Augo and		7.00 4.84	40.00 444	4.00 044	4.00 044	7.00 044	40.00 044
At Nind speed lym/h	1:00 AM	4:00 AM	7:00 AM	10:00 AM	1:00 PM	4:00 PM	7:00 PM	10:00 PM
knots	6	4	5	9	12	- 30 16	28 15	28 15
Wind direction	w	NNW	NNW	NNW	NW	NW	NW	NW
Relative humidity (%)	93	100	100	82	78	74	93	89
Forest fuel dryness factor	4.2	4.2	4.2	7.3	7.3	7.3	7.3	7.3
Mixing height (m)	300	300	307	1025	1264	1446	365	697
Vednesday 29 May								~ /

Thursday 30 May

Friday 31 May

Comparison of rainfall and mean temperature history vs 2030

	Annual rainfall MM	Mean temperature deg C
base		
1955 to 2018	706	13.31
1989 to 2018	674	13.57
2030 – 1	716	14.38
2030 – 2	703	14.47
2030 – 3	635	14.69
2030 - 4	707	14.37

Do changes in temperature and rainfall tell us the whole story?

	Annual rainfall MM	Mean temperature deg C	Annual pasture Production kg dm/ha	Annual dse /ha at the same GC rule
2030 – 1	716	14.38	8157	13.5
2030 – 2	703	14.47	8291	11.3
2030 – 3	635	14.69	6823	10.3
2030 - 4	707	14.37	8267	12.2

Dy 3.14 – yellow podzolic

	Profit \$/ha	Annual pasture kg dm/ha	DSE/ha
Base	57	6204	5.9
Model 1	133	6322	7.1
Model 2	59	6494	6.3
Model 3	41	5533	5.4
Model 4	120	6679	7.2

Dr 2.12 – red podzolic

	Profit \$/ha	Annual pasture kg dm/ha	DSE/ha
Base	305	7684	11.1
Model 1	430	8157	13.5
Model 2	279	8291	11.3
Model 3	270	6823	10.3
Model 4	350	8267	12.2

Uc 1.2 – uniform course textured sands

	Profit \$/ha	Annual pasture kg dm/ha	DSE/ha
Base	330	7971	11.6
Model 1	426	8519	13.2
Model 2	311	8509	11.9
Model 3	284	7023	10.5
Model 4	376	8416	12.8

Dy 3.41 – profit \$/ha

Dr 2.21 – profit \$/ha

Uc 1.2 – profit \$/ha

Green pasture – 2030 vs 1989-18 - at 50% level

Green pasture – 2030 vs 1989-18 - at 10% level

Kg DM/ha green

10% pasture

Comparing model 2 and 3 at 10% and 50% of green pasture production

Uc 1.2 – uniform course textured sands

	Profit \$/ha	Annual pasture kg dm/ha	DSE/ha
Base	330	7971	11.6
Model 1	426	8519	13.2
Model 2	311	8509	11.9
Model 3	284	7023	10.5
Model 4	376	8416	12.8

What does this work not cover?

- **Stock water** in my view this is the greatest short term problem that the tablelands grazing industries have. The higher evaporation rates are rendering a lot of dams as unreliable.
- Need fewer deeper dams OR need to cover good dams. The cost to the business of destocking due to lack of stock water is substantial and would be greater then taking measures to improve water reliability.

What can I be doing?

- Protecting pastures and soils in dry events is critical. This can be achieved via containment areas or destocking. Each strategy has a different impact on the business which needs to be considered. It is the time of the impact that is the biggest difference.
- Build flexibility into your livestock system, so you can react to good or bad seasons.
- As the national herd and flock is getting smaller retaining a useful breeding structure will be important. As more producers want to trade a smaller pie the downside risks of trading will increase.

Summary

- The impact of 2030 climate on the livestock system is not as severe as most people expect. This is due to the small change in rainfall predicted.
- Note the impact of the driest model, 12% decrease in rainfall but app 50% reduction in profit. Small changes can have big impacts.
- These results are similar to other work done in the region the tablelands.
- A key issue will be the way that major dry events are managed and the ability of the business to capture extra profits from the good years.
- Do not extend this outcome to other regions.

What information do we need?

- Producers and advisors need to be kept up to date with the potential path of the climate. The 4 models show different paths, what action we should take depends on which path is the future. I'm not seeing this work being done.
- A difference of 50 to 70 mm in long term rainfall could be substantial.
- All this data is based on work done around 2010.
- The number of locations that are recording weather data is dropping. Yass has stopped recording in August 2018, started rainfall in 1889. This is creating extra "noise" we can do without.